

Sounding Rocket Working Group December 20, 2006

NASA Sounding Rocket Operations Contract (NSROC)

Wallops Flight Facility

SRWG Agenda - NSROC

NSROC State of Affairs
Mesquito Development
Guidance, Navigation & Control
Electrical Engineering
Mechanical Engineering
Conclusions

Rob Maddox
Dave Krause
Walter Costello
Shelby Elborn
Giovanni Rosanova
Rob Maddox

Program Manager

Rob Maddox

Contract Status

- Contract Year 8 almost complete
- Maintaining very good PEB scores
- New Govt. Contracting Officer Pam Taylor
- New Northrop Grumman Technical Services Sector
- New local Contracts Administrator to start mid January
- Recruiting several engineering positions

Sub Contract Status

- Bristol
 - · Black Brant return to flight
 - Black Brant motor procurement
- Saab Completed delivery of 4 S-19L systems
- Aerojet Maintained minimal support for Mk VI systems
- U. of Wisconsin Ongoing support for ST5000
- PSL Ongoing support for instrumentation systems
- Herley Industries Significant order placed for radar transponders

- Challenges
 - Implement new technology
 - Attitude Control Systems
 - Vehicle configurations
 - Electrical Systems
 - Complex Missions
 - Methods outside experience envelope
 - Budget
 - Balancing staff, procurements, reimbursable workload
 - Schedule
 - Heavy manifest for 2007
 - Significant OT required for PFRR campaign

- Safety Close Calls
 - 3 close calls occurred involving ordnance shorting plugs
 - Independent investigations by NASA and NG
 - 32 corrective actions issued to prevent similar occurrences
 - 75% of correction actions have been implemented, remainder will be complete by end of December
- Operational Safety Supervisor (OSS) role being enhanced
 - OSS will be from independent work group NSROC SQA & Code 803
 - OSS will perform more QA functions in addition to safety oversight
- Additional training for employees
 - Hazardous procedure upgrades
 - Proper procedure protocol
 - Task closeout documentation and photos

- Recent Reimbursable Projects (since last SRWG)
 - US Navy Aegis FTM-10: Two Terrier Orion missions
 - US Navy Aegis FTM-11: One Terrier Oriole mission
 - US Army Infrasound 5&6: Two Orion missions
 - US Army THAAD: Two Black Brant IX mission
 - LIDS Manufacturing Task
 - HyBolt TM and T&E Services
 - RPCS+ for WMSR
- Total of 21 reimbursable projects for Contract Year 8 (Feb 06 to Jan 07).

- New Business Opportunities (since last SRWG)
 - US Navy Aegis FTM-12: Two Terrier Orion missions
 - US Navy Aegis FTM-12a: Emergency Terrier Orions!
 - US Navy Aegis FTM-13: Two Terrier Orion missions
 - US Navy JFTM-1: One Terrier Oriole mission
 - USAF Airborne Laser MARTI 1&2: Two BBIX missions
 - USAF Airborne Laser: Five Terrier Lynx missions
 - MDA LeClair: One Black Brant IX mission
 - US Navy TSER Program NGTS Proposal Pending
 - MDA DET LCAT Program SRPO Dialog
 - US Navy SCSC Fleet Training Rockets Early Discussions
 - JPL New Millennium Anxiously awaiting the NMP ST-9 Decision
 - Langley HyBolt support underway

Student Outreach

- 2006 students (Spring 4; Summer 6; Fall 3)
- 2007 (Spring 5; Summer 8; Fall 2)
- 55 students have participated in this program; NSROC has hired 5
 Intern/Coop graduates as full time engineers; another works for NG Space
 Systems in CA; 2 have achieved Doctorates; 6 have obtained or are pursuing Masters Degrees.
- ESCC Intern Program: 2 Interns now FTE NSROC Techs
- NSROC Extern Program begins 1/8/07 with 2 VT students.
- Program is a model for Royce Cutler's USAF Program in CA
- 5 NSROC employees have joined Wallops' Character Counts Team, an outreach for local schools.

NSROC GNC

Walt Costello

GNC – Walt Costello

- Celestial ACS
 - Test Flight: ST-5000 Anomaly Report
 - Successful Cash Launch
 - ST-5000 Focus Problem
 - Celestial Mission Schedule
 - Celestial Challenges
- Boost Guidance Systems S-19A, S-19D, and S-19L
- Audenaert 36.237/36.238 Successful acrobatic magnetic ACS
- GPS Velocity Vector Input to NIACS
- GLN-MAC Attitude Determination Performance
- Digital Magnetometer Performance
- Poker Flat Campaign, 2007
- Informal Evaluation NSROC ACS vs Vendor ACS

12.058 ST-5000 Anomaly AIB Report

- ST-5000 Rebooted at Motor Burnout and rebooted again during first reboot
 - Caused by pinched wire which momentarily dragged down 5V power enough to cause reboot (only had to sag 0.25 V)
 - After Reboot, ST-5000 came up in anomalous state and failed to communicate with ACS
 - ST-5000 software defects have been found and corrected
 - CACS ST5000 handshaking improvements have been made
 - ST-5000 design improvements pending engineering structure sufficiently robust for now electrical improvements also pending.
 - System Engineering improvements made working more closely with UWISC
- Otherwise Celestial ACS performance was nominal
 - GLN-MAC performance good,
 - Stars seen on ST-5000 video downlink
 - Uplink worked very well.

Cash 36,224

- Free test flight for Celestial ACS (thank you, Dr. Cash!)
 - Was possible to meet Comprehensive Success with telescope, uplink & GLN-MAC only (same as 12.058 ACS)
 - Was possible to meet minimum success with GLN-MAC only
- ST-5000 performed many lost-in-space successfully
 - Focus problem caused difficulty differential tracking
 - Algorithm problem caused individual stars to be dropped, resulting in loss of track.
 Number of stars tracked dropped from high of 14 to below 3 (minimum for track).
 - Unlike 058, this problem is well understood
- Comprehensive success was achieved
 - Between acquisitions, ACS held well on GLN-MAC
 - In all other respects, including uplink, performance was nominal
 - System is capable now of +/- 10 arcsec performance
 - Focus and algorithm problems are well understood
 - We have a great deal of confidence they can be fixed.

Cash 36.224 ST-5000 Focus problem

- ST-5000 has very short focal length (~F1)
 - Required for adequate photon counts
 - Extremely sensitive to small variations
- Focus is slightly different in air and vacuum
 - Temperature and vibration may also cause changes
 - ST-5000 is deliberately defocused to improve centroid accuracy (thus, there is not a requirement for perfect focus)
 - Differences in focus must be accounted for
 - UWISC is developing optical tool to use in testing and setting focus
- Differential tracking algorithm is not sufficiently robust
 - Better centroid algorithms and/or improvements to current algorithm are under investigation.
 - Three validity tests criteria are probably too severe
 - Drift can cause great changes as pixel boundary is crossed
 - When a star is dropped it is gone forever considering maintaining tracking list
 - Considering 2-D Gaussian fit instead of 1-D parabolic fit.
 - Considering total flux test instead of max pixel flux (less variability)

Cash 36.224

Scheduled Celestial Missions

- 12.059 Costello Mar 2007 (test flight)
 - ST-5000 focus problem
 - Pressure Controller fine pitch-yaw control for Chakrabarti
 - LN-251 fine rate sensor
- 36.225 Chakrabarti Mar 2007
 - Must acquire within 1 arc-sec
 - Very precise control based on science provided "perfect" error signal
 - Cooled shutter door is presenting challenges
- 36.220 McCandliss Jun 2007
 - Target position within +/- 5 arc-min
 - Command Uplink to 10 arc-sec Slit
- 36.207 Cruddace TBD (AeroJet OR Celestial)
 - Less than 1 arc-sec/sec jitter
 - Less than 0.2 arc-min/min drift
 - +/- 2 arc min target
- 36.226 Bock Feb 2008
 - 3 arc-sec max error in 20 seconds
 - Side looking ST-5000
- 36.235 Harris Jun 2008
 - 20-30 arc-sec

Celestial ACS Challenges

- Fine pointing performance (~ 1 arc-sec) requires upgraded rate gyros.
 - Near-term approach: Retain GLN-MAC
 - Add LN-251 Digital IMU as precise rate gyro
 - 2 on order delivery was 22 Dec 06 now slipped 30 to 45 days
 - Have "loaner" LN-250 (3" vs. 5" loop on LN-251)
- Redesigned tri-level pneumatics for fine pointing
 - Axially-mounted valves at the nozzle block reduces ullage.
 - Very fast valves for fine pointing have been delivered
- Testing Pressure Controllers as alternate approach
 - Fast valves still nonlinear and may have too much vibration for Chakrabarti
 - Testing Alicat Scientific Pressure Controllers using differential thrust
- Chakrabarti is a particularly challenging mission
 - But it IS possible without LN-251
 - Need to get into 10 arc-sec box on our own
 - Then use experimenter's "perfect" error signal
 - To test closed-loop performance will feed back Lackey signal
 - Upgraded Lackey is on order (increased precision)

GNC – Boost Guidance Systems

- 1 S-19A system left scheduled for McCammon
 - 2 MIDAS gyros left at SVC for refurbishment
- 3 S-19D w/DMARS
 - Two flew on Cash and Woods are being refurbished
 - One ready to fly
 - Approx 4 month refurbishment cycle for S-19D
- 4 S-19L systems have been delivered will order one per year
 - Audenaert 32.237 & 36.238 both flew S-19L refurbishment complete
 - On 238, made spectacular save when Terrier fin was lost
 - Strap-down LN-200 may be only adequate for rail attitude hold.
 - More reliable without gimbal also faster refurbishment
 - Reimbursable missions made procurement possible
- S-19G design available could do IIP steering (DS-19)
 - Both designs build on existing DS-19 design & software, replace DMARS, and Incorporate SAAB Guidance Processor Unit (GPU) which accepts raw LN-200 data
 - No S-19G have been manufactured

Audenaert 36.237 & 36.238

- Reimbursable mission with compressed schedule
- First two flights of S-19L this mission paid for manufacture
- NMACS control to present targets to THAAD radar
- No TM Gyros (to save money)
- Attitude determination with sun sensors & magnetometer
- Complex maneuvers including controlled tumble of forward payload
- Un-instrumented aft payload with pneumatic impulse tumbles
- Ten sun sensors on aft payload
- Forward payload recovered both NMACS to be re-flown on Larson
- Customer very pleased
- "Soldiers yet unborn are in your debt"

Audenaert 36.238

- Forward payload controlled tumble
- Tumble continued after control off (as expected)

Audenaert 36.237 Aft Payload Tumble

- Interesting solar sensor pulse
- Almost 2 second pulse caused by tumbling trajectory

Audenaert 36.238

Aft Body Tumble - NSROC(a) Attitude Solution

GPS Velocity Vector Input to NIACS

Seybold 41.068 WSMR April 5, 2006 (successful test flight)

Earle 36.218 Wallops Oct 2006 (no science, no launch)

• Craven 35.037 Poker Flat Feb 2007 (input to experiment)

• Earle 36.218 Wallops April 2007 (may slip to fall)

Robertson 41.069/70 Andoya June 2007

Digital Magnetometer Performance

Poker Flat Campaign 2007

- Integration went well no significant ACS problems
- Larson
 - 2 NMACS with TM Gyros
 - Similar to Joule
 - Also 2 chemical rockets
- Lessard
 - NIACS
 - Complex sub-payloads with Horizon Crossing Indicators (HCI)
- LaBelle
 - NMACS & TM Gyro & HCI
 - Straightforward mission
- Craven
 - NIACS & Digital Magnetometer
 - Trajectory modification similar to Conde
 - Velocity vector input to experiment
 - Also three instrumented chemical rockets with HCI

SRWG asked for NSROC ACS Comparison to Vendor ACS

NMACS vs Space Vector

- Comparable mass, volume, power
- Performance improvements include
 - Magnetometer software filter removes need for auto-bias
 - Performance assessments (accuracy) so far are very good
 - Software allows more flexibility and variety of maneuvers
 - HILTS enhances software testability, allows software change in field
- Telemetry much improved
 - Digital serial data provided on real-time GUI
 - Real time data available on air bearing and IN FLIGHT!
 - Data available immediately after flight, just tell us what you want
- Ease of use, flexibility and reliability
 - 14" NMACS design available and has been used
- Extensions available (all we need is THE STATED REQUIREMENT)
 - Mini system for sub payloads
 - Off-B attitude control (using HCl or sun sensors)

- TM and ACS Gyro: GLN-MAC vs MIDAS
 - Comparable mass, volume, power (slightly longer)
 - Major performance improvements
 - Drift spec 1 degree per hour (most test to _ degree per hour)
 - Compare to MIDAS 3 degrees during your flight
 - We are experiencing _ degree from launch (mostly launcher variability)
 - Software allows more flexibility and variety of maneuvers
 - Telemetry much improved
 - Digital serial data provided on real-time GUI
 - Real time data available on air bearing and IN FLIGHT!
 - Axes are always orthogonal no special data reduction requirements
 - Data available immediately after flight, just tell us what you want
 - Ease of use and Reliability
 - NO LIMITATION ON MANEUVERS
 - No danger of tumbling
 - MINIMAL IN-HOUSE REFURBISHMENT

NIACS vs Space Vector

- Comparable mass, volume, power flexible pneumatics volume
- Major performance improvements
 - Drift spec 1 degree per hour (most test to _ degree per hour)
 - Compare to MIDAS 3 degrees during your flight
 - We are experiencing _ degree from launch (mostly launcher variability)
 - Software allows more flexibility and variety of maneuvers
- Telemetry much improved
 - Digital serial data provided on real-time GUI
 - Real time data available on air bearing and IN FLIGHT!
 - Gyro axes are always orthogonal
 - Data available immediately after flight, if you tell us what you want
- Ease of use and Reliability
 - No limitation on maneuvers
 - No danger of tumbling
- Major Extensions Available
 - Velocity Vector Steering
 - Digital Magnetometer Steering
 - Can use any vector input for steering including from the experiment
 - 14" ACS available (Robertson)

Celestial vs AeroJet

- Comparable mass, volume, power
- We are losing Ron Hall expertise (but we stole Neil Shoemaker)
- Still in development
 - ST-5000 currently has focus issues, but Ball single-star tracker is obsolete
 - ST-5000 issues are well understood and resolvable
 - GLN-MAC inferior to analog TRIGS upgrading to LN-251
- Pneumatics developing from previous WFF system
 - Commonality with NIACS
 - Pressure controller under development for precise pointing
- Enhanced testability
 - Laser Autocollimator including precision control drive
 - Star tracker "learn" mode
 - ACS cradle with motor driven by control system
 - Focus tool (under development)

NSROC(a)

- No vendor equivalent (except for Horizon Crossing Indicator)
 - · Can obtain attitude data without Gyro
 - Sun sensors from ARL are performing very well
 - New Horizon Crossing Indicators (HCI) minimized in size

SPARCS

- No vendor equivalent
- Excellent historical performance
- Undergoing continuous improvement
- Evaluating digital rate sensors

• S-19

- Still vendor supplied (SAAB)
- Procured S-19L version: LN-200 with NO GIMBAL
- S-19L has faster refurbishment cycle and is cheaper than S-19D

Cost considerations

- No overall detailed cost study has been undertaken
- Budget austerity and Inflation would have to be considered
- Now the funds flow to Sounding Rocket infrastructure instead of vendors
- Vendor overhead is avoided
- Vendor profit is avoided
- Sounding Rocket engineering capability and innovation is enhanced
- Sounding Rocket program flexibility and responsiveness is enhanced

Bottom Line

- "Skunk Works" approach is faster, cheaper, and often even better
- It's harder but it's more fun
- Please stretch your imagination and give us some interesting requirements
- But we have enough sub-arc-second projects for a while ©

Thank You For Your Support

- NSROC ACS stands ready to support experimenters worldwide.
- Questions?
- Comments?
- Observations?

Shelby Elborn

Wide Bandwidth, High Efficiency S-Band Transmitters

Issues

- Currently any PCM downlink operating over ~1.5 Mega Bit Per Second requires using a 10-Watt S-Band transmitter whether we are going 100 km or 1000 km.
- The 10-Watt transmitter requires 3.1 Amps to operate and generates ~75 Watts of heat
- Existing 2, 5 & 8 Watt narrowband transmitters are not frequency agile.

Solution

Procure new higher bandwidth, higher efficiency frequency agile units

Program Benefits

- Reduced payload weight due to smaller battery and heat sinking mass requirements.
- Frequency agility allows only having to purchase/stock one model per RF power rating

Status

- 5 Each 2 Watt and 5 Watt received. Environmental qualification testing completed on 5
 Watt First Article and in process on 2 Watt First Article
- 2 5 Watt units being flown on 40.020 Lessard
- 2 Watt units planned for use in the new Mesquito payloads

Wide Bandwidth, High Efficiency 5 Watt S-Band Transmitter

Wide Bandwidth, High Efficiency 2 Watt S-Band Transmitter

Mesquito PCM

Program Benefits

- System designed and built in-house allowing mechanical design to be custom tailored to Mesquito application.
- Low cost by fabricating system in-house.

Implementation

- Designing with a modular approach with stackable add-on data modules.
- Presently targeting 16 analog inputs per module with 48 channel max and configurable serial digital or asynchronous data module with 2 inputs each.

Breadboard Test Results

- Synchronous serial digital data at rates up to 2 M BPS
- Asynchronous data input rates up to 115.2 K baud
- Analog data with 16 bits resolution

Status

PC board layout for all boards has begun.

Mesquito Power Switching

Program Considerations

- Traditional mechanical relays are too large for use in the extremely space and weight limited Mesquito payload
- Mechanical relays may not survive the 100-120 G's acceleration.
- Two mechanical relays and sockets are ~\$500 whereas 2 solid state switches are ~\$25

Implementation

- Surface mount circuit technology
- Device selected rated for 4.5 Amps

Breadboard Test Results

- Tested at 4 Amps continuous for 4 hours
- Tested 2 hours while switching on and off at 1 Hz while loading to 4 Amps

Status

Schematic design of TM and Exp power switching and distribution in final design.

Mesquito Power Switching

Mesquito Current Sensing

Program Considerations

 Traditional current sensors are too large for use in the extremely space and weight limited Mesquito payload.

Implementation

- Surface mount circuit technology using high power low resistance (.010 Ohm) voltage dropping resistor with Kelvin connections.
- Circuitry designed for monitoring 0-5 Amps.

Breadboard Test Results

- Extremely linear over the 0-5 Amp range.
- No low end sensitivity issues as noted with present Hall effect sensors.

Status

- Schematic design of current sensor and operational amplifier completed.
- Design incorporated on same PC board as TM & Exp. solid state power switching circuitry.

Mesquito Current Sensing

Mechanical Engineering

Giovanni Rosanova

Mechanical Engineering

- Vibration Testing Loads Investigation Update
 - Non-advocate Review held on 8/16/06.
 - Chaired by Chuck Brodell; AETD and Science representation on the Panel
 - Dr. Ricky Stanfield presented data, analytical approach, and proposed new test philosophy.
 - Follow-on meeting with AETD to discuss alternate analytical approach that is more in line with GSFC and other centers. Requires more flight data to build statistical confidence.
 - Panel does not recommend radical changes to the current test philosophy and loads at this time. Incremental, necessary, and independently reviewed changes recommended.
 - Panel recommends further investigation into shipping loads and other dynamic inputs.

Mechanical Engineering

- Supporting multiple efforts
 - Final stages of BB Mk1 Return to Flight: Reports, analyses, etc. Working with Bristol and SRPO.
 - MLRS development
 - Close Call Corrective Action Plan effort
 - Mission-specific issues
- Future efforts
 - More new vehicle development: Taurus replacement, Patriot
 - Next generation Flight Termination System Joint effort with NASA: AETD, SRPO, Safety

Conclusions

- NSROC is committed to continuing the SRPO mission and program successes. 2006 has been a good year for Sounding Rockets.
- NSROC's Primary Goal is unchanged:
 - to satisfy the Code S PI mission requirements.
- NSROC is committed in expanding the technical innovations while
 - Meeting the requirements of the PIs
 - Maintaining a cost effective environment
 - Making effective use of the in-house talent, experience and hardware.
- NSROC's early receipt of the SRWG findings is important for future growth planning.